2023 Montana Geohazards Workshop – April 26-27, 2023

Action Items:

- 1. Form Montana Earthquake Working Group:
 - Obtain Letters of Interest from each organization expressing common goals to collaborate to better understand and reduce earthquake hazards. This working group would provide the initial step towards establishing a MT Seismic Safety Commission.
- 2. Earthquake Working Group develop:
 - Strategic Plan/guidance document to present at next legislative session. Update every 2 years (model after Utah)
 - A story document (e.g. Utah's "Putting Down Roots in Earthquake Country").
 - Safety Assessment Program (SAP) coordination across state agencies.
 - Templates: Back to Business (B2B); Building Occupancy Resumption Program (BORP); Functional Occupancy and Recovery Work Agreement for Reducing Downtime (FORWARD).
- 3. Benefit-Cost Analysis for Helena.
 - Use Helena School District as a pilot location for generating an inventory (geodatabase). of seismically vulnerable buildings ("high risk structures").
 - Helena School district apply for DES grant (FEMA pass through) to assess Helena Schools.
 - Public outreach/education campaign as a deliverable.
 - Volunteer help from structural engineers.
- 4. Choose location for next meeting: Bitterroot Valley? Missoula? Kalispell?

Key Points:

- MBMG has a recently established Geohazards Program:
 - Active faults program (Quaternary last 2.6 Ma).
 - Earthquake monitoring.
 - Landslides mapping and site-specific investigations.
 - Bitterroot fault study: Recent work suggests 2 earthquakes in the last 10-15,000 years.
- MBMG has secured funding from USGS-NEHRP and FEMA-NERHP through MT-DES to map landslides by county using LiDAR datasets.
 - Completed: Jefferson and Deer Lodge.
 - Funded: Powell, Ravalli, Lincoln.
 - Montana Elevation Working Group with support of the USGS 3-DEP plans to acquire 1 m resolution LiDAR of entire state by 2025 available through the Montana State Library.
- Montana has a history of damaging earthquakes (e.g. Helena 1935; Hebgen Lake 1959).
 - MT is within the Intermountain Seismic Belt extending from Utah through western Wyoming into Montana; extends from Butte to Bozeman and passes through Helena (trends approx. N-S) and the Centennial Tectonic Belt which extends through southwestern-most MT into Idaho (trends E-NE/W-SW).
- MBMG is working on a suitability and logistic regression models for mapping landslide potential.
- MBMG's seismic network contains predominantly "antiquated" equipment that does not provide full waveform data for larger events.
 - MBMG currently has a DNRC Reclamation and Development Project Grant to add 10 modern digital seismograph stations to the network.
- Montana's growing population in areas with earthquake hazards provide more tangible funding opportunities with federal and state agencies to investigate hazards.

- Disaster response requires massive coordination across state agencies.
 - Following disaster, damage estimates are needed.
 - Recovery time for an earthquake/disaster is years.
 - Ability to reoccupy structures following a disaster makes the community more resilient. Buildings facilitate communities; therefore, we rely on buildings to "bounce back" following a disaster.
 - Disasters affect communities physically, socially, psychologically; can destroy social fabric. Disasters can diversify and strengthen our economies.
- Earthquake preparedness is in competition with preparedness for fires and flooding, impacts of which are more tangible for many folks (especially given recent fires and flooding events).
 - We need to be poised and ready to respond as soon as something happens.
 - Need to get information out to local community Great Shakeout need to focus on education/outreach.
 - Change will come from within communities before it comes from leaders
- Earthquakes can affect energy transmission, water availability, etc.
 - Things break down within 24 hours without energy
 - Is infrastructure designed for seismic safety?
 - GIS team is developing at DEQ overlay infrastructure with seismicity.
- MDT has designed structures for seismic risk and has also completed seismic retrofit projects
- Challenges with non-federal dams:
 - Owners of private dams prefer to spend money on tangible items like construction or monitoring instead of studies.
 - Few engineers specialize in seismic analysis of dams.
 - Dams follow probabilistic design criteria, which is an issue because many faults in MT are blind (hidden, no surface expression).
- FEMA NEHRP Priorities:
 - *Current* Building codes and design guides; Outreach campaigns; Disaster support and post event studies; Supporting state earthquake programs; Training
 - *Future* Earthquake insurance; Building inventories; Support states to access retrofit funds (e.g., BRIC); Linking with other programs; GIS and risk modeling
- FEMA-NEHRP funding to support earthquake mitigation activities
 - Develop seismic mitigation plans; develop inventories/perform seismic safety inspections of critical structures/infrastructure; update building codes; education re: earthquake insurance; assist Multi-State groups with any of the above
- FEMA Hazus model and USGS earthquake response products:
 - USGS Prompt Assessment of Global Earthquakes for Response (PAGER)
 - Hazus is a model that highlights mitigation opportunities. Accounts for impacts to an area given a specific earthquake hypocenter/magnitude and population/infrastructure
- MT-DES funding streams: BRIC; Hazard Mitigation Grant Program (HGMP); NEHRP; FEMA High Hazard Potential Dam Project
- MT-DES structural retrofit examples: Helena's water reservoirs; UM-Western Main Hall; MSU Creative Arts Complex
- Table top exercise: 2025 Helena Valley Earthquake Sequence— see notes on the Panel Discussion on the Earthquake Scenarios for Helena Valley (Mw 6.3 and Mw 6.0).

Please see minutes of the meeting for more complete details on the 2023 MT Geohazard Workshop.